Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y