Python Interview Questions for Data/Business Analysts:
Question 1:
Given a dataset in a CSV file, how would you read it into a Pandas DataFrame? And how would you handle missing values?
Question 2:
Describe the difference between a list, a tuple, and a dictionary in Python. Provide an example for each.
Question 3:
Imagine you are provided with two datasets, 'sales_data' and 'product_data', both in the form of Pandas DataFrames. How would you merge these datasets on a common column named 'ProductID'?
Question 4:
How would you handle duplicate rows in a Pandas DataFrame? Write a Python code snippet to demonstrate.
Question 5:
Describe the difference between '.iloc[] and '.loc[]' in the context of Pandas.
Question 6:
In Python's Matplotlib library, how would you plot a line chart to visualize monthly sales? Assume you have a list of months and a list of corresponding sales numbers.
Question 7:
How would you use Python to connect to a SQL database and fetch data into a Pandas DataFrame?
Question 8:
Explain the concept of list comprehensions in Python. Can you provide an example where it's useful for data analysis?
Question 9:
How would you reshape a long-format DataFrame to a wide format using Pandas? Explain with an example.
Question 10:
What are lambda functions in Python? How are they beneficial in data wrangling tasks?
Question 11:
Describe a scenario where you would use the 'groupby()' method in Pandas. How would you aggregate data after grouping?
Question 12:
You are provided with a Pandas DataFrame that contains a column with date strings. How would you convert this column to a datetime format? Additionally, how would you extract the month and year from these datetime objects?
Question 13:
Explain the purpose of the 'pivot_table' method in Pandas and describe a business scenario where it might be useful.
Question 14:
How would you handle large datasets that don't fit into memory? Are you familiar with Dask or any similar libraries?
Python Interview Q&A: https://topmate.io/coding/898340
Like for more ❤️
ENJOY LEARNING 👍👍